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Let S~" denote the collection of polynomial splines of order k with at most
(n - 1) free knots, each of multiplicity r. This paper explicitly finds the constants
Ck.,.p so that

lim nk dist L,ro.IJ{f, S~"} = Ck.,.P IIPk)kro.IJ'
n-+'l

where (J = p/(kp + 1) and f is sufficiently smooth. This completely fills the gap
between previously known results for simple knots (r = 1) and for piecewise
polynomials (r = k). We also consider similar asymptotic properties pertaining to
approximation of vector functions by vector splines. We define the latter to be
families of vector functions whose components are splines of order k with common
knots. 1987 Academic Press. Inc

O. INTRODUCTION

The nonlinear problem of finding the optimal location for placing n - 1
knots when trying to best approximate a function f from a family of
polynomial spline functions based upon these knots is surprisingly difficult.
This paper and several previous ones consider precise asymptotic error
bounds as n tends to infinity. The techniques used in the proof of these
asymptotic results provide very interesting suggestions for nonoptimal knot
location schemes and nonbest approximation procedures which are much
more easily implemented and yet produce the same asymptotic errors as n
tends to infinity.

We will consider polynomial splines with multiple knots. Let s~·r denote
the nonlinear collection of polynomial spline functions defined on [0, 1] of
order k with at most n- 1 free knots, each of multiplicity r. Thus s E s~·r if
the following hold: (1) there exist knots {t i } with 0< t I :(

t2 < ... < tn - 1 < 1 (where for simplicity we define to = ° and tn = 1);
1
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(2) s equals a polynomial of degree (k - I) when restricted to any interval
[t i I' t i) for i = I, 2, ... , n; and (3) sU )(t i- ) = s(j)(tn for j = 0, 1,..., k - r - I
and i = I, 2,..., n - 1. When r = I, S~·I denotes polynomial splines with sim
ple knots, and when r = k, condition (3) above is empty and S~,k denotes
the set of piecewise polynomials with no continuity requirement across
pIeces.

The main result of this paper is to prove that for 1 :( p < 00 and for a suf
ficiently smooth function f, one has

lim nk dist Lp[O. 1] U; S~,r} = Ck, r.p II jlk) II Lo[O, 1]'
n --+ :x;

where (J = p/(kp + 1) and the constants Ck,r,p are independent of f and
explicitly known. The case when r = k was established by Burchard and
Hale [5]. See also the discussion in [12, p, 295] for even earlier work, For
r = 1 and p = 2, this result can be found in Barrow and Smith [2]. Pence
and Smith [10] extended the previous paper to cover when r= 1 and
1 :( p < 00, and they ended with a conjecture on the form of the constants
Ck.r,p based upon the then-known cases of r=k and r= 1. We will show
that the conjecture there is slightly wrong by proving the correct result.

For completeness, we summarize results about periodic splines with mul
tiple knots which are needed in the proof of our main result. Once we have
these preliminary results, the proofs that follow in this paper are not that
different from those in [10], so that not every detail will be given. In the
last section we give the corresponding results for vector splines, as they are
defined there,

1. PRELIMINARY PERIODIC SPLINE RESULTS

We bring together some useful results concerning periodic splines.
Hopefully this presentation will make more people aware of the usefulness
of the shifted Bernoulli functions,

Let S~( {z,}; {r;}) denote the linear space of I-periodic splines of order
k, The",," reminds us that these functions are really circular. Here we
adopt the convention that the knots satisfy

The multiplicity of knot Zi is specified by the integer r; where 1:( r;:( k,
Taking advantage of the periodicity, we consider these splines to be defined
everywhere and we extend the knot set to a biinfinite set {z;},
i = ,.., - 1, 0, 2,,.,. Such splines are determined by m polynomial pieces, and
the dimension of this space is d = r, + r2 + ... + rm' (See [12, Section 8.1]
for more details, including zero counting theorems for periodic splines.)
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In a certain sense, the analog of the truncated power basis will be
provided by the periodic Bernoulli functions. Let

denote the kth Bernoulli polynomial. The constant term is the kth Bernoulli
number. These numbers satisfy the recursion relation

k~2,

with Bo= I for completeness. The key properties of the Bernoulli
polynomials are that

and

B~(x) = kBk -1 (x), k~ 1; J: Bdx) dx = 0, k~ 1;

j = 0, 1,..., k - 2 and k ~ 2.

Extending such a Bernoulli polynomial off the interval [0, 1] by
periodicity gives the Bernoulli function Bdx). Thus

Bk(x) = x k+ rPk(X),

where rPk(X) is a spline of order k with simple knots at the integers [11].
More generally, a function of the form

where t/J E S~( {Z; }; {r i } ), is called a periodic monospline, and we denote the
collection of all of these by MS~({z;}, {r;}). Let MS~({ri}) denote the
collection with free knots, i.e., the union of all MS~( {z;}; {r;}) with
o:( z 1 < z 2 < ... < zm < 1. It may happen that a particular monospline has
a higher order of continuity across a knot than is required in the class
MS:({r;}). For example Bk(x)/k! is a member with ZI=O and any
Z2"'" Zm satisfying 0 < Z2 < .. , < Zm < 1 considered as the knots. For a
specific monospline rP, we say the effective multiplicity of a knot Z; is the
integer r, where 0:( r:( r; and

for j = 0, 1,..., k - r - 1,

but
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Combining the results in Section 8.2 and Section 8.4 of [12J, we can
appeal to a zero counting procedure and a Budan Fourier Theorem for
periodic monosplines.

THEOREM A (Bojanov). For 1~p < oc, there exists a unique element of
MS~({r;}) of minimal norm in Lp[O, 1J, ignoring trivial translations of the
knot set wholly within [0, 1).

COROLLARY 1. In the case where r i = r, for all i, which we will denote by
Ms~r, the knots of the minimal periodic monospline of Theorem A are
equally spaced and have effective multiplicity equal to r if r is odd, and equal
to r - 1 if r is even.

The case where r = 1 of the corollary can be found within [13]. The
theorem and the corollary are explicitly stated in [4J where topological
degree theory is used to establish uniqueness. Both Zensykbaev and
Bojanov explore the connections with optimal quadrature rules. We re
prove the corollary and investigate the precise form of the minimal periodic
monospline to obtain the bounds needed later.

Proof of Corollary 1. We can represent an arbitrary periodic
monospline M(x) E Ms~r by

m r I

k!M(x)=G(x)= L L aIj1h_)x-zJ+c,
i~ I j~O

where we require that

m

L a i•O = 1.
i= I

The necessary conditions for a minimum for IIG(x)ll~ to be realized by
G*(x) by varying the coefficients and knots subject to the above equality
constraint are the following (using Lagrange multipliers and then sim
plifying):

(l) Sb IG*(xW I sgn G*(x) dx = 0;

(2) SbIG*(x)IP-1sgnG*(x)Bk(x-zi)dx=A, i=I,...,m;

(3) Sb IG*(xW I sgn G*(x) Bk_)x-z,) dx=O,
i= 1,..., m andj= 1,..., r-l;

(4) ai,(r 1) HIG*(x)IP- 1 sgn G*(x) Bk_Ax - Z,) dx = 0,
i = 1,..., m when r < k

or ai,(k I) IG*(zJI P I sgn G*(z,) = 0, i= 1, ... , m when r = k.
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Note. The partial differentiation with respect to z i giving (4) when r = k
above is accomplished in a manner similar to the differentiation of g(k - I)

immediately below.
Following the arguments of [13], let

A II 0g(t) =- - IG*(x)IP-1 sgn G*(x) Bdx - t) dx.
p 0

Then

gUl(t) = (-1 Y.k! II IG*(x)IP-1 sgn G*(x) Bk j(X - t) dx,
(k-j)! 0

j = 1, 2, ..., k - 2;

f
l+l

glk- Il(t) = (-1 )k-I k! IG*(x)IP-l sgn G*(x) B)(x - t) dx;
I

glk 1(t)=(_I)k-l k! IG*(t)IP-I sgnG*(t).

Thus glk) and G* have the same zeros (not counting multiplicity). Con
ditions (2) and (3) imply that

for i = 1,..., m and j = 0, 1,..., r - 1.

Condition (4) implies that either ai,(r I) = 0 or glr)(z;) = 0, where i = 1,..., m.
Note that when ai.(r- l) = 0, the effective multiplicity of the knot z; drops
down to at most r - 1. Let I denote the set of indices i where ai.(r -I) # 0,
and let / denote the cardinality of I. Applying Rolle's Theorem, we can
conclude that g(k) (and hence G*) has at least rm + / simple zeros.
However, the monospline G*(x )/k! can have at most rm zeros when r is
even and at most rm + 2/ - m zeros when r is odd. This follows from the
strong version of the Budan-Fourier Theorem for monosplines
[12, Theorem 8.43, p. 332], considering that G*(x)/k! is periodic and is a
member of the set of monosplines with multiplicity r at each knot z; where
i E I and multiplicity (r - 1) at each knot z, where i ¢ I. Thus we must have
that / = 0 when r is even and 1= m when r is odd. That means that the
effective multiplicity of each knot in G*(x) must be odd, regardless of the
parity of r. It sufficies to consider further only the case when r is odd (since
this same monospline G* must be optimal in the case of the even mul
tiplicity one greater than r).

Theorem A guarantees a unique minimal G*(') with, say Zl =0.
However, each G*(--z;) will also be a candidate having the same norm. We
conclude that the knots must be equally spaced and that the coefficients of
like orders of shifted Bernoulli functions in G* must be equal, i.e.,
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and

Zi+ 1 = i/m, i=O, 1,..., m-l

j=o, 1,... , r-1 and i= 1,... , m.

In particular, IX o = 11m since L aj,o = 1. Use the identity (see [1, 8])

m-I

Bv(mx)=m v- 1 L Bv(x+ilm).
i=O

Then for °~ x < 11m,

Bv(mx) = m v- I [Bv(X) + '~Il Bv(x - m,:- i) j= m v- 1 [t; B,,(x- ilm)j

and

Since shifting by 11m leaves G* unchanged, we have

IIG*(x)ll~ =rIG*(x)IP dx = mf I r+ l)/m IG*(x)IP dx = mrm

IG*(x)IP dx
o I~O I/m 0

where &j = mi + I IXj and c= mk c.

Further, these coefficients must be chosen to make the norm of G* as
small as possible. We define

If r is odd, Ck,r+ I.p = C k . r.p since, as noted above, the same monospline
G*(x) will satisfy the conditions of optimality for the case r and the case
r+ 1.

Then the minimal Lp-norm monospline M* from Ms~r satisfies

1 <P< CfJ, I ~r<k.
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When p = 2, these constants can be easily calculated using that

7

1 , .,

f - (j-I) V.].
Bv(x) B)x) dx - (-1) -(-.-), B v+j ,

o V +] .
j~V:

C I, 1,2 = Ji7i2 = 0.28868

C2,1,2 = Jl/180 = 0.07454

C3,1,2 = Jl/840 = 0.03450

C4,1,2 = Jl72lOO = 0.02182

CS,I,2 = }5/16632 = 0.01734

which is the table of values for Ck ,r,2'

C 3,3,2 = jl72800 = 0.01890

C4,3,2 = Jl/44100 = 0.00476

CS,3,2 = }1/332640 = 0.00173,

2. ASYMPTOTIC PROPERTIES FOR SPLINE ApPROXIMATION

We can now completely settle the conjecture given at the very end of
[10] where it is conjectured that

Given a sequence of knots {t;}={O=tO<t l <,,· <tn=l} for the
interval [0, 1], let s~,r( {t i }) denote the space of polynomial splines of
order k with knots {t i }, each of multiplicity r, where 1~ r ~ k. A special
method for obtaining knots is to use a knot quantile function t, where the t
maps [0,1] onto itself with t'~0. Let S~,r(t)=S~,r({t(i/n)}, i=O, ...,n).
Recall that s~·r denotes the collection of splines of order k with at most
(n - 1) free knots, each of multiplicity r, and adding a "0" above indicates
adding the adjective periodic (on [0, 1]).

THEOREM 1. Let f E Ck[0, 1], the bijection t E C 1[0, 1] satisfy 0 < (j < t'
and 1~p < 00. Then

lim nk dist Lp[o,l](f, s~,r(t)) = Ck,r,p(Jk,p(f, t))I/p,
n _ ,X)

where

Jk.p(f, t)=rIf(k)(t(x)W(t'(x))kP+ldx,

°
and the constant Ck,r,p is defined in Section 1.
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The special case of Theorem 1 when r = 1 and p = 2 was shown by
Barrow and Smith [2]. The case when r = 1 and 1~p < ef) can be found in
[10], where the results were further extended to cover when t' ~°and the
set of points where eitherf(k) or t' fails to exist has content zero. The same
extensions can be made for the results of this paper, but for simplicity this
will not be discussed. The methods used in [10] carryover with little
change, and we note only the major differences in the outlines of the proof.

Outline of the Proof of Theorem 1

Let p~.r·p(t) denote the Lp[O, 1] metric projection onto s~·r(t) and
p~,r,p( {z i }) denote the projection onto s~,r( {z i }). Suppose I is a closed
subinterval of [0, 1] and r: [0, 1] --+ I denotes the linear change of
variable, i.e., r' is constantly III, the length of the interval I. Let I denote
the kth degree Taylor expansion off about some point a E I and R denote
the remainder function. Suppose that only the 1-1 points t lo + I,· .. , t lo + 1 I

from {t(i/n)} lie in the interior of I and that r( zn = t 10 +i = 1,..., 1- 1.
Further let zt =°and zt = 1. Then

Ik II f- p~,r.P(t) flip,! = Ik IIII/p II Fr - (p~,r,p(t) flor IIp,[o, I]

~ Ik IIII/P{ II rr - (P~,r·P(t) ftr IIp,[o,l] -II (f-Itr IIp,[o, I]}

~ Ik III1/P{ rr - (P~,r,p( {Zi*} Hrr)llp,[o,I] -IIKrllp,[o.I]}'

Let Q(j(k), a, I)=max{lpk)(O-pk)(a)l, ~EI}, a quantity often used in
remainder estimates, Then we can bound the remainder R and conclude
that

We can interpret any spline on [0, 1] as a periodic spline where °is
added as a k-tuple knot. Further we recognize that Bk (') is a monic
polynomial. Thus we can use the results of Section 1 in a manner similar to
[10, p. 410]:

>-(_I_)k IIlk+(I/p) If(k)(a)IC .
;;-- 1+ 2k k,r.p

Let I be an arbitrary positive integer. For each n> I, let mn be the
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greatest integer less than or equal to (nil), Ij= [(j-1) l/n,jl/n] and
Jj = t(Ij), for j = i, ..., m n . Then following the argument in [10, p. 411],

nkp ( II j - p~.r.p( t) j lip. [O.I])P

~ enkPj~l IkP( II j - p~.r·p(t)j II p •.J7)P

~ GrPi~llc+12kr Ck.r.plj(k\(jll- K1lkQ(j(k), (j, JjllP IJi Ikp+ 1

>-(~)kP.~ [(_I_)k
P

cP Ij(k)((.nW- K IkQ(f(k) (n r)j Irlkp+1.:--- I 1... 1+ 2k k.r.p J 2 , l' 1 1
1 ~ 1

There exist points 'lj E Ii such that

Since the above estimates are valid for any choice of (i E Ji, we set
(j = t('lj),j = 1,..., mn-

Then

The first summation lacks only a term for the subinterval [mn(l/n), 1] in
order to be a Riemann sum for the interval [0, 1]. Thus as n ---+ 00, it tends
to

(
I )kP 1

-- CP f Ij(k)(t(X)W(t'(X))kP+l dx.
1+ 2k k.r.p 0

The second summation is bounded above by

This goes to zero as n ---+ CXJ because j(k) is continuous and its modulus of
continuity, w(j(kl,h)=sup{lpk)(x)-j(k\Y)I: Ix-YI~h}, tends to zero
as h ---+ 0.
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Taking the limit as 1--+ 00, we obtain a lower bound for the desired quan
tity.

An upper bound for

lim nkp II f-pk,r.P(t)j'IIP
." p. [0.11

ll-X'

is obtained by replacing the best approximation p~,r,p(t)f by a locally
defined approximation

where {z Ii } is the knot set {t( i/n)} with each interior knot repeated r times
and the end points 0 and 1 repeated as needed, and N v,,, denotes the k
order normalized B-spline based upon {z,,} with suppNv,,,=[Z,,Z'+k].
The B-spline coefficients are determined as follows, Let J be the set of
indices satisfying (1) OEJ; (2) if jEJ, then J=min{m:m~j+k,

zm=zm+l }EJ, For eachjEJ, we require that

for

where

and Bk,r,p(x) is the monic polynomial providing the minimum III the
definition of

Any coefficient function AI',,, not specified above is set to zero. The
justification that this provides the desired upper bound is similar to the
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simple knot arguments in [10] and was briefly presented in [9]. Thus
Theorem 1 is established.

We can now apply a calculus of variation argument to the bound in
Theorem 1 to obtain an optimal knot quantile function. This is easily done
by changing the variational problem. Let u( r) = (t -1 )' (r). Then

Jk,p(f, t) =rIj(k)(r)IP(u(r))-kPdr.
o

The optimal function u* minimizing this integral is

u*(r) = Ij<k)( r)l"/fa' Ij<k)(OllJ d¢, (J = p/(kp + 1).

Then the associated optimal quantile function t* (in the case where we
assume Ij(k) I is never zero) makes the integrand in

a constant function. Thus the terms in the following summations are all
equal.

Jk,p(f, t*)= nf r+
1lln

Ij(k)(t*(X))IP(t*'(X))kp+ldx
j~O lin

This justifies schemes to locate knots {t j } so as to equalize

fl.'+! Ij(k)(rW dr~K(n) Ilj-pk,r,p({t})IIP
n J P,[ti,li+lJ'

I,

i.e., to "balance" the errors on knot intervals.
The above argument provides part of the proof of the following free knot

result. Since the complete proof is very similar to that given in
[2, pp. 229-302] and [10, pp. 417---420] and since we will be considering a
generalized version in the next section, we will omit this proof.

THEOREM 2. For jE Ck[O, 1],

lim nk dist Lp[O, I](f, S~,r) = Ck, r,p II j(k) II lJ, [0, 1]
11 _ CX'

where (J = (p/(kp + 1)).
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3. VECTOR ApPROXIMATIONS

It is easy to carryover the previous work to the setting of approximating
vector functions by vector splines. Let VS~.r( {tv} ) denote the space of vec
tor splines of the form s = (s 1, ... , Sm), where each s i E S~' "( { t I }), i.e., the
component functions are splines which share a common knot set. The vec
tor generalization of the various spline collections will be denoted in a
similar fashion. Of the many possible norms on vector functions
f = (fl, ... ,fm), we choose

where the weights {Wi} are strictly positive real numbers. The space of vec
tor functions for which this norm is finite will be denoted by VLp[O, I],
with the usual convention of identifying equivalence classes to obtain a true
norm. Note that

where II(YI ,... , Ym)ll #,1' = u:::;'~ 1 Wi IYilp} 1/", a weighted norm in lp(m).
To give a practical example where this type of approximation might be

desirable, the attitude, or rotational orientation, of a satellite can be
represented in a variety of ways as a vector function where time is the
independent variable. For instance a 3~1-2 Euler angle sequence
(t/J(x), cft(x), 8(x)) would describe the succession of rotation angles of
appropriate coordinate axes to go from some reference frame to the orien
tation of the satellite at time x. While each component function could be
approximated independently by splines, the storage requirements for saving
the approximations can be reduced by one-third if a common knot set is
used.

THEOREM 3. Let f = (fl, ...,fm), where IE Ck[O, I], for i = 1,... , m; and
let t E C' [0, 1] be a bijection satisfying 0<6 < t'. Then

lim nk dist vl.p
[o,1](f, VS~,'(t)) = Ck,r,,,[Jk,p(f, t)JI/",

n --+ CD
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where

Jk,p II(C, t)=rf (wilflk)(t(x)W)(t'(x))kP+1 dx.
o i~ I

Proof

Applying Theorem 1 to each component gives the desired result.

13

THEOREM 4. Let C= (fl,,,.,fm), where fi E Ck[O, 1], for i = 1,.", m. Then

lim nkdistvLp[O.ll(C, vs~·r)=Ck.r.p W(f\k),,,.,f!:)),
n ~ 00

where

W(f\k) ,,,.,f!:)) = [( (~I Wi 1 f~k)(rW)l/(kp+ I) dr JkP+I)/p.

Proof Part J (upper bound). It is advantageous to rewrite Jk,p(f, t) as

J(u)= ( t~l Wi Iflk)(rW} u(r)-k
p

dr,

where u( r) = (t - 1)'( r). Then

when t(x) = r. Thus the restrictions on the function u must be that

u( r) ~ 0, for °~ r ~ 1 and ru( rd) r = 1.
o

A standard variational argument yields that the only critical function is

Checking the second variation verifies that this indeed yields a minimum.
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Letting t* denote the knot quantile function associated with u*,

Again the optimal knot quantile function t* makes the original integrand
in h,p(f, t*) constant, and this can be interpreted as balancing the errors
over knot intervals, i.e., the terms for j = 0, ... , n - 1 above are equal.

This establishes the desired upper bound.

limn~co nkdistvLp[o,l](f, VS~,r)~inf lim nkdistvLp[o.l](f, vs~r(t»)
t 11 ----+ x·

- C (J (f t*»lIp- C' W(f(k) j'(k)- k",.p k,p , - k,r,p 1 , ••• , m •

Part 2 (lower bound). We establish the claim that

lim nkdist~Lpro,l1(f, VS~,r)~Ck,r.p WU\k), ...,f,t;I). (3.1)
t/- :x.

The proof closely follows that in [2, Theorem 2, pp.300-302J and in [10,
Theorem 5.2, pp.418-210].

Case (i). Let f(x) = (f31 xk, f12X", ..., fJmxk)/k! Then

[n k dist VLrE O. l ))(f, VS~,r)JP

= [nk dist VLp[O. Il((/31 Bk(' ), , /3mBd' »)/k!, vs~,r)y

~ [nk dist VLp[O.I]( (/31 Bk(- ), , /3mBk( . )/k!, Vs~,~ 2k)Y

= n
kpr(~l Wi \ f3iV \Bk,r.p(xW/(k !)p) dx

nkpCP m
- k,r.p" 1/3 IP
- (n + 2k)kp i:-l Wi i •

Notice
m m

I Wi IfJil P = I Wi If~k)(1W
i= 1 i= 1

= [I: C~I w,lfjkl(r)!pY/(kP+l) drTP+'
= [W(/31 ,... , f3m)]P.
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(3.3 )

Therefore (3.1) is valid in this case.

Case (ii). Let f=(f"""}',,,), wheref;ECk[O, 1] and L7~1 wllflk)IP~

6> 0. Suppose the lower bound (3.1) is false. Then for some infinite subset
of positive integers Z 1, we have

nkdistvLp[o,,](f, vs~r)=:nk Ilf-snil <dW(f\kl,oo.,fr;,»), (3.2)

where 0< d < Ck,r,p and n E ZI' For each L = 1,2'00" and for n sufficiently
large in Z I' subdivide the interval [0, 1] into finitely many closed subinter
vals {Iv:= [a v, av+ I]} whose endpoints coincide with the knots of the
optimal Sn, where L <Lv <L + k + 1. Thus L Lv =: n<n. Let
(J =p/(kp + 1). The inequality (3.2) implies that

(I I m )1/(kP + I)

nk
" " w· J: - s ·1 p~ 1 I n,r

o i~ 1

1 ( m ) l/(kp + 1)

< d" fa i~l W; Iflk)(rW dr.

Suppose that for every v, we have

(3.4 )

If so, then summing both sides over v and applying Holder's inequality for
finite sequences yields

1 ( ) I/(kp + 1)

d" fa ;~I Wi If~k)(rW dr

(

m )l/(kP+ I)

<~ L~" t i~1 Wi 1/;-Sn,iI
P

(3.5)

640:49'1-2
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However, (3.5) would contradict (3.3). Thus for every posItIve integer
n E Z I' there exists an index v = vn where (3.4) fails to be valid.

Next we pass to an infinite subset Z2 c ZI where we have every Lv" = L,
some constant, when n E Z2' Further, let a be an accumulation point of the
set of left endpoints of II", n E Z 3' Again passing to an infinite subset
Z3 c Z2, we can have a as the limit point of (Xv", n E Z3' Since
L Wi If~k)IP? 6 > 0, we can argue that the length of Iv" must go to zero as n
from Z3 goes to infinity. Now for n E Z3,

changes variables from Iv" to [0, 1] on both sides:

P ({ L Wi Ifi(II•.J Z+C(vJ-Si(Z)11/PY

< d(tl(L w,1 f~kl(II.J Z+ (XvJIPf(k
P

+I} (J

Take the limit as n from Z3 tends to infinity:

where fJi= Ifyl(a)l, i= 1,..., m. However, this contradicts case (i) if such is
possible for any L < l. Thus we conclude that the lower bound (3.1) is
valid in this second case.

Case (iii). Let f=(fl,.oo,f~), wheref;ECk[O, 1], for i=1,00.,m, and let
A = {x E [0, 1]: Lr~ I WJ~kl(x) = O}. Suppose (3.1) is false. Then for an
infinite subset of positive integers, Zl' we have

II m (I1( )1 /(kP+II)kP+I
n

kp
0 i~1 Wi II-sn.iIP<dP () L Wi If~k)IP ,

for some 0< d < Ck.r.p. We can find a d with d < d < Ck.r and closed sub
intervals {Ii} so that L7~1 Wi If~k)1 ?6>0, for some 6>0, and all
i = 1'00" m with

dP(~1 w l { If~k)IPrp+I ~dP(~1 Wlfro.ll,A If~k)IPrp+l

By arguments analogous to those given in case (ii) (see also
[10, pp. 419-20]), we arrive at a contraction. That completes the proof of
the theorem.
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